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Motivated by the observation of spatially anisotropic exchange constants in the iron pnictide materials, we
study the spin-wave spectra of the J1a-J1b-J2 Heisenberg models on a square lattice with nearest-neighbor
exchange J1a along x and J1b along y axis and a second-neighbor exchange J2. We focus on the regime, where
the spins order at �� ,0�, and compute the spectra by systematic expansions around the Ising limit. We study
both spin-half and spin-one Heisenberg models as well as a range of parameters to cover various cases
proposed for the iron pnictide materials. The low-energy spectra have anisotropic spin-wave velocities and are
renormalized with respect to linear spin-wave theory by up to 20%, depending on parameters. Extreme aniso-
tropy, consisting of a ferromagnetic J1b=−�JF�, is best distinguished from a weak anisotropy �J1a�J1b=J1,
J2�J1 /2� by the nature of the spin waves near the wave vectors �0,�� or �� ,��. The reported spectra for the
pnictide material CaFe2As2 clearly imply such an extreme anisotropy.
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The parent phases of iron pnictide superconductors have
been found to be metallic but with antiferromagnetic order at
low temperatures.1–3 There is an ongoing debate between the
validity of a strong-coupling picture, with local spins inter-
acting via Heisenberg exchange interactions, and a weak
coupling picture where partial nesting of the fermi surface
leads to a spin-density-wave order.4–19 In this paper we will
not get into this debate but rather focus on the systematic
calculations of spin-wave spectra for Heisenberg models on
an anisotropic square lattice with nearest and second-
neighbor interactions, using series expansion methods.20,21

Such studies of spatially anisotropic interactions on triangu-
lar lattices have proved fruitful in understanding magnetic
properties of several organic and inorganic materials.22,23

This work should similarly be helpful for understanding ma-
terials with an orthorhombic square-lattice geometry.24

Neutron scattering spectra for the pnictides show sharp
spin waves.25 In the low temperature phase there is ortho-
rhombic distortion and the exchange constants have been
found to be substantially anisotropic. For different materials,
and sometimes even for the same material, different ex-
change constants have been reported.26,27 In some cases,
there are reports of extreme anisotropy in the nearest-
neighbor exchange. They are found to be strong and antifer-
romagnetic along one axis and weak and ferromagnetic
along the other.26 The origin of the strong spatial anisotropy
remains controversial, one theory being that it is due to or-
bital order,18,19,28–31 which may drive the tetragonal to ortho-
rhombic transition in these materials. In this paper, we focus
on temperatures much below the ordering temperature,
where in the strong-coupling picture a Heisenberg Hamil-
tonian should be appropriate.

We will consider the Hamiltonian

H = J1a�i
S� i · S� i+x̂ + J1b�i

S� i · S� i+ŷ + J2��i,k� S� i · S�k, �1�

The first two terms represent the nearest-neighbor exchange
along the x and y axes, respectively. The third term is the
second-neighbor exchange which is taken to be independent
of direction. Here we are interested in parameter ranges that
lead to antiferromagnetic order at �� ,0� as found in the iron
pnictides. There are two ranges of parameters of interest: �i�
J1a is the largest energy scale, J1b is small positive or nega-
tive and J2 is of order or smaller than J1 /2. �ii� J1a and J1b
are comparable and J2�J1a /2, J1b /2. The latter case is
highly frustrated and colinear �� ,0� order is stabilized by
quantum fluctuations. In the former case, the system is un-
frustrated or weakly frustrated and �� ,0� order minimizes all
or nearly all the interactions.

The case of J1a=J1b was discussed in an earlier study.32

That case is conceptually more subtle as the classical ground
state in the �� ,0� phase is highly degenerate. Spins on the
two sublattices of the square lattice are free to rotate with
respect to each other. The colinear order is selected by quan-
tum fluctuations through an order by disorder
mechanism.33–35 This also has important consequences for
the spin-wave spectra. The linear spin-wave spectra have
spurious gapless modes in addition to those required by
Goldstone’s theorem. These become gapped upon proper in-
clusion of quantum fluctuations.32,36 Once J1a is not equal to
J1b, the classical ground state becomes unique becoming an-
tiferromagnetic along the direction of larger exchange, and
linear spin-wave theory should give the qualitatively correct
spectra.

The linear spin-wave dispersion for the model is given
by18
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�k = 4SJ2
��Ak

2 − Bk
2� �2�

with

Ak = 1 + � − � + � cos ky , �3�

and,

Bk = cos�kx�	cos�ky� + �
 . �4�

Here, �=J1a / �2J2�, and �=J1b / �2J2�. The spectral weights
associated with the spin waves is given by the expression

Sk ���Ak − Bk�
�Ak + Bk�

. �5�

These lead to spin-wave velocity along x of

vx = 2S�2J2 + J1a�

and along y of

vy = 2S��2J2 − J1b��2J2 + J1a� .

For the numerical calculations, it is convenient to set
J1a=1. The actual energy scale for the material can be de-
duced by comparing with experiments. Motivated by the ex-
perimentally reported parameters,26,27 we will study five dif-

ferent parameter sets: �i� J1b=−0.2, J2=0.4, �ii� J1b=0, J2
=0.4, �iii� J1b=0.2, J2=0.4, �iv� J1b=0.2, J2=0.9, �v� J1b
=0.8, J2=1.4. In all cases, we will calculate spectra for both
spin-half and spin-one models to see if the shape of the spec-
tra has any significant spin dependence.

For all these parameters, we develop Ising series expan-
sions for the spin-wave dispersion and their spectral weights.
The series are computed to eighth order and involve a set of
280 474 distinct clusters. These are analyzed throughout the
zone using series extrapolation methods. These extrapolation
methods converge extremely well if one is not too close to
�0,0� or the ordering wave vector �� ,0�. The dispersion must
go to zero near these, with a linear in q behavior although
with anisotropic spin-wave velocities. We have used the
method of Singh and Gelfand37 to calculate the spin-wave
velocities. Very near these wave vectors the linear dispersion
is assumed with the calculated anisotropic spin-wave veloci-
ties to obtain the spectra. The spectral weights are calculated
by the methods discussed by Zheng et al.38 The spectral
weights vanish near �0,0� but diverge as 1 /q near the order-
ing wave vector. We will not focus much on the region very
close to this divergence. Away from that point, simple Pade
approximants �or just addition of terms in the series� con-
verges very well. We will see that what distinguishes the

TABLE I. 	m/n
 Pade and overall estimates �Est.� of spin-wave velocities �vx ,vy� for spin-half models for
different J1b and J2 values with J1a=1.0

J1b, J2 v 	4/4
 	5/3
 	3/5
 	4/3
 	3/4
 Est.

−0.2, 0.4 vx 2.1029 2.1043 2.1039 2.1013 2.1012 2.10

−0.2, 0.4 vy 1.4162 1.4123 1.4114 1.4056 1.4016 1.41

0.0, 0.4 vx 2.1169 2.1244 1.9803 2.1360 2.1268 2.12

0.0, 0.4 vy 1.2590 1.3712 1.1754 1.2622 1.2619 1.26

0.2, 0.4 vx 2.1120 2.3405 2.1718 2.3117 2.1726 2.19

0.2, 0.4 vy 1.0749 1.1355 1.1092 1.1645 1.1200 1.11

0.2, 0.9 vx 3.1269 3.1532 3.1444 3.1434 3.1410 3.14

0.2, 0.9 vy 2.3616 2.3804 2.3771 2.3816 2.3796 2.38

0.8, 1.4 vx 4.1823 4.3840 4.2505 4.2848 4.2253 4.26

0.8, 1.4 vy 3.2355 3.3711 3.2967 3.4350 3.3278 3.33

TABLE II. 	m/n
 Pade and overall estimates �Est.� of spin-wave velocities �vx ,vy� for spin-one models for
different J1b and J2 values with J1a=1.0.

J1b, J2 v 	4/4
 	5/3
 	3/5
 	4/3
 	3/4
 Est.

−0.2, 0.4 vx /4 0.9669 0.9669 0.9692 0.9684 0.9676 0.968

−0.2, 0.4 vy /4 0.6938 0.6986 0.6999 0.6959 0.6950 0.697

0.0, 0.4 vx /4 0.9650 1.0128 0.9712 0.9698 0.9692 0.970

0.0, 0.4 vy /4 0.6202 0.6567 0.6256 0.6236 0.6227 0.624

0.2, 0.4 vx /4 0.9673 0.9696 0.9692 0.9701 0.9696 0.969

0.2, 0.4 vy /4 0.5370 0.5398 0.5389 0.5363 0.5398 0.539

0.2, 0.9 vx /4 1.4797 1.4828 1.4819 1.4834 1.4819 1.482

0.2, 0.9 vy /4 1.1195 1.1226 1.1217 1.1235 1.1217 1.122

0.8, 1.4 vx /4 2.0100 1.9999 1.9967 1.9932 1.9900 1.999

0.8, 1.4 vy /4 1.5016 1.5026 1.5016 1.5041 1.5015 1.502
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different models, after an overall energy scale has been
scaled out of the problem, is the nature of the high-energy
short-wavelength spin waves and that is our primary focus
here.

The spin-wave velocities along x and y for the different
parameter ranges calculated from the series expansions are
shown in Table I for spin-half and Table II for spin-one. The
colinear ordering pattern and the square-lattice Brillouin
zone with some q vectors used for defining the contours
along which spectra will be shown are depicted in Fig. 1.

In Figs. 2–4, we show the calculated spectra along a se-
lected contour in the Brillouin zone for the spin-half model,
spin-one model, and linear spin-wave theory, respectively.
The uncertainties in the series calculations, over most of the
Brillouin zone, are of order 1%. Note that within linear spin-
wave theory spin-wave dispersion would be independent of
spin once an overall energy scale has been taken out. There

is a clear overall similarity between the spectra, showing that
spin value does not significantly alter the shape of the spec-
tra. Also, having J1a not equal to J1b clearly improves the
validity of spin-wave theory.32 The primary correction to lin-
ear spin-wave theory is an upward renormalization of the
spectra, which is up to 20% for the spin-half case and less
than 10% for the spin-one case. Even at low energies these
renormalizations are found to be anisotropic. The renormal-
ization of spin-wave energy is especially nonuniform near
the antiferromagnetic zone boundary. Most notably, flat re-
gions of the linear spin-wave spectra acquire some dispersion
on inclusion of quantum fluctuations. As expected, these
structures are more pronounced for spin-half than for spin-
one case. This is not dissimilar to the nearest-neighbor
square-lattice case, where also the zone-boundary dispersion
acquires a structure that is absent in linear spin-wave
theory.37–39

The spectral weights associated with the spin waves for
the spin-half models and for linear spin-wave theory are
shown in Figs. 5 and 6, respectively. One finds that along
certain directions, and especially at long wavelengths the dif-
ferent models are indistinguishable. The major differences
between different parameters sets arise when one considers
the weights at short wavelengths or high energies. In the
extreme anisotropy case, when the spin wave is a maximum
at �0,��, there is only a small scattering intensity around that
wave vector. In the weak anisotropy limit, when there is low
excitation energies at these wave vectors, there is also en-
hanced intensity at these wave vectors.

The density of states for the spin-half models is shown in
Fig. 7. The key distinguishing feature is that the weakly frus-
trated models have sharp peaks close to highest energies.
This is also evident from the spectra, where there are flat
regions in the dispersion curve.

FIG. 1. On the left is the ordering pattern of the pnictides. On
the right is the positive quadrant of the square-lattice Brillouin zone
showing wave vectors � �0,0�, A �� /2,0�, Q �� ,0�, D �� ,��, B
�� /2,��, and C �0,��. With long-range order at �� ,0� the distinct
energies are contained inside the region �ABC.
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FIG. 2. Linear spin-wave spectra for the models along selected contours in the Brillouin zone.
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We now discuss the relevance of these calculations to the
observed spectra in the iron pnictide materials. We first note
that the observation of sharp spin waves throughout the Bril-
louin zone would be strongly supportive of a local moment
picture. Zhao et al.26 have argued that this is indeed the case
and that there is an absence of a Stoner continuum in these

materials, which should have been present if an itinerant pic-
ture for the magnetism was more appropriate. This suggests
that magnetism and metallic behavior can be treated sepa-
rately. This controversial issue40 is clearly beyond the scope
of the present work. We will instead restrict ourselves to
discussing the spin-wave dispersion and spectral intensities
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FIG. 3. Spin-wave spectra calculated by series expansions for the spin-half models along selected contours in the Brillouin zone.
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expected from the Heisenberg models in different parameter
regimes, so that they can guide future experiments. As dis-
cussed earlier, spin does not play a big role in these models
except to set the overall energy scale in terms of J. However,
since J1a is an adjustable parameter, it can always be rescaled

to match the experimental data. Hence, all comparisons be-
low are done in terms of the spin-half models.

Figure 8 shows a comparison of the calculated dispersion
for the different parameters with the experimental measure-
ments in CaFe2As2. In all cases, the exchange constant J1a is

(0,0) (π,0) (π,π) (0,π) (0,0)

Weight for Series Expansion

J1b=-0.2 J2=0.4
J1b= 0 J2=0.4

J1b= 0.2 J2=0.4
J1b= 0.2 J2=0.9
J1b=-0.8 J2=1.4

FIG. 5. Spectral weights associated with the spin waves, in arbitrary units, along a special contour in the momentum space for the
spin-half Heisenberg models, as calculated by Ising series expansions.

(0,0) (π,0) (π,π) (0,π) (0,0)

Linear Spin Wave Weights

J1b=-0.2 J2=0.4
J1b= 0 J2=0.4

J1b= 0.2 J2=0.4
J1b= 0.2 J2=0.9
J1b=-0.8 J2=1.4

FIG. 6. Spectral weights associated with the spin waves, in arbitrary units, along a special contour in the momentum space obtained from
linear spin-wave theory
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adjusted to match with the low-energy spectra near the zone
center. The estimated values for J1a are 86.9, 86.1, 86.0,
58.9, and 44.3 meV in the cases �i� through �v�, respectively.
Note that theoretical error bars are of order 1%. It is clear
that all parameters are equally good for describing the zone-
center spectra along both x and y axes. The difference really
arises when one studies the zone-boundary excitations. In
particular the spectra near �0,�� can only be explained by
the parameters J1b /J1a=−0.2, J2 /J1b=0.4. Even if we make
J1b zero or slightly positive, we can no longer describe the
high-energy spectra. The weakly anisotropic models have
sharp dips near �0,�� and hence have no chance of describ-
ing the observed spectra. It would be useful to systematically

look for the high-energy spin-wave spectra in different fam-
ily of iron pnictide materials to see how universal the high-
energy spectra are.

To further guide neutron scattering studies in this direc-
tion, we create two dimensional scattering intensity profiles
in the Brillouin zone at different frequencies. Our results do
not include any form-factor effects and unlike experiments
have no noise. We use an artificial Gaussian broadening in �
to mimic finite experimental resolution. Thus we take

S�q,�� = S�q�exp −
�� − �q�2

	2 .

with a suitably chosen 	, which we take to be independent of
q. Here S�q� and �q are the spectral intensity and spin-wave
frequencies calculated by series expansions. We focus on
cases �i� and �v�, which correspond to most anisotropic ex-
changes and least frustrated model and least anisotropic ex-
changes and most frustrated model, respectively.

In Fig. 9, the intensities are plotted over the full Brillouin
Zone for several different frequencies for the models �i� and
�v�. The evolution from a single bright spot at the zone center
at low energies, due to finite resolution, to an ellipse with a
hole in the middle at intermediate energies is a standard fea-
ture of this type of �� ,0� order. This feature is similar for all
parameter sets. There are clear differences, however, even at
low frequencies, which should be resolvable with high accu-
racy data. The plots on the left are more elliptical and those
on the right are more circular. As one moves to high energies
and excitations move far from the zone center, details of the
local Hamiltonian become clearly visible. The two cases
shown have vastly different spectra. It should be noted that
relative to the zone center, the intensity at higher energies is
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FIG. 7. �Color online� Density of states for the different spin-
half models as calculated by series expansions.
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FIG. 8. A comparison of the measured spectra in CaFe2As2, with the different models.
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significantly diminished. At the highest energy shown, exci-
tations are present only in the plots on the left. The plots on
the right just show weak vestiges of lower energy excitations
due to the assumed finite resolution.

In Fig. 10 intensity plots are made upon averaging the
spectra at �qx ,qy� and �qy ,qx�, as would be expected in a

heavily twinned sample. It is evident that major distinctions
between the two models remain evident despite the restora-
tion of the 90° rotational symmetry. So, while the detwinning
of the materials may be important to get complete informa-
tion, spectra from a twinned sample can also distinguish a
weakly anisotropic model from a strongly anisotropic one.

In conclusion, in this paper we have used series expansion
methods to calculate the spin-wave spectra and spectral
weights for orthorhombic square-lattice Heisenberg models.

FIG. 9. �Color online� Scattering intensities in the full Brillouin
zone centered at the ordering wave vector, for �from top to down�
�=25 meV, 100, 150, 175, and 225 meV for the strongly aniso-
tropic, weakly frustrated model on the left and weakly anisotropic,
strongly frustrated model on the right,

FIG. 10. �Color online� Scattering intensities as in Fig. 9 in a
substantially twinned sample, which leads to restoration of tetrago-
nal symmetry.
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We find that the linear spin-wave theory is qualitatively valid
for weak and strong frustration. This case is different from a
system with tetragonal symmetry where linear spin-wave
theory was found to be qualitatively incorrect. In general, the
renormalization of the spin-wave energies throughout the
zone is of order or less than 20%. The high-energy spin
waves and their dispersion provide a particularly sensitive
way to narrow down parameter ranges and determine the
extent of spatial anisotropy in the exchange constants of dif-
ferent orthorhombic materials.

The spectra of the iron pnictide materials imply a strongly

anisotropic system, where nearest-neighbor exchanges are
strong and antiferromagnetic in one direction and weak and
ferromagnetic in the other. While this study has ignored the
metallic nature of the pnictides and focused entirely on a
local moment description, the conclusion of strong spatial
anisotropy is likely to have much broader validity. The im-
plications of this anisotropy in other properties of the system
deserve further attention.

We would like to thank G. Uhrig, O Sushkov, S. Savrasov
and W. Pickett for useful discussions.
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